Please use another Browser

It looks like you are using a browser that is not fully supported. Please note that there might be constraints on site display and usability. For the best experience we suggest that you download the newest version of a supported browser:

Internet Explorer, Chrome Browser, Firefox Browser, Safari Browser

繼續當前的瀏覽器

邁向永續能源的未來

克服永續能源系統的挑戰

全球人口不斷增長,能源的需求急遽攀升。這對永續能源系統構成四大核心挑戰:供應安全性、可負擔性、氣候保護及資源效率。我們要有獨創的巧思,才能成功邁向未來。

快速鍵

能源轉換鏈需要全面改良

為了克服永續性的挑戰,能源轉換鏈必須採取全面性的因應措施,包括發電/交通石化燃料的利用方式,乃至於各種耗能改善方案。

艱鉅的目標

全面掌握永續能源系統的運作

改善能源效率,向來是推動產業發展的主要驅力,這方面也已有重大進展,能夠透過創新技術,更妥善地利用石化燃料、再生能源以及既有電力。不過,面對未來的嚴苛挑戰,我們還必須更加努力。

相較於現有的系統,未來的能源系統必須大幅降低溫室氣體排放量。若要達成這項目標,就必須有效掌控以下因素:大幅增加的再生能源比例、波動饋入的電量、小型發電廠的分散發電模式。這需要眾多不同市場營運商和技術供應商的合作,形成複合式的電力供應系統,並透過新的商業模式加以經營。因此,除了改善能源轉換鏈的各個環節以外,數位化轉型也將成為能源系統穩定、永續運作的一大關鍵。

來聽聽權威專家怎麼說:

image

瞬息萬變的發展趨勢

落磯山學院首席科學家 Amory Lovins

若想要全盤瞭解當前全球能源市場趨勢,就必須採納 Amory B. Lovins 的洞見。四十多年來,Lovins在能源效率和潔淨能源解決方案等領域享譽盛名,儼然成為全球頂尖權威。

最近,在他位於科羅拉多斯諾馬斯郊區的綠能示範住宅中,Lovins受訪表示:「各大石油公司和電力業者,都必須設法妥善運用資產和技術能力;並且克服萬難改革企業文化,才能在全然不同的市場中競爭,市場變化的速度超乎他們想像,一般企業文化改革的腳步將望塵莫及。」

 

與 Amory Lovins 的訪談

image

「您是否承擔得起風險?」

香港中電集團執行長 Richard Lancaster

我們訪問到亞洲最大電力事業執行長 Richard Lancaster,向他請教氣候變遷的議題,以及能源技術是否已準備好迎接挑戰。

Lancaster表示:「理想上,我們應該達成零碳排放,但這項目標涉及極大的轉變;另一方面,目前已有足夠的技術,可以讓我們渡過這段轉型期。檢視轉型過程就能瞭解,不會有一蹴可幾的完美解決方案。那樣反而會曠日廢時。

因此我們仍需要更多天然氣、核能和再生能源,以及更有效率的能源使用方式。這些都是我們勢在必行的任務。」

 

與 Richard Lancaster 的訪談

更多元的市場

經營能源系統,從來不是一件簡單的事。隨著數位化帶來更多嶄新契機,管理永續能源系統甚至變得更具挑戰性,往後也仍然如此。於此同時,市場將出現更多商機,讓更多參與者從中獲利。


Jacob Østergaard 教授是丹麥技術大學 (DTU) 電力及能源中心主任,他談及 IT 領域的主要發展趨勢,及其對於市場參與者的影響。

智慧數位技術帶來全新可能

隨著更多參與者湧入市場,所衍生的資料也大幅增加。例如,光是一台大型燃氣渦輪機,每秒都有數百具感測器在測量溫度、壓力、氣流路徑和氣體成分。所有生產商、生產型消費者及一般消費者,都必須靈活而有效率的方式彼此連結,才能實現運作穩定的未來能源系統。畢竟,把握這波數位化契機,是別無選擇的唯一道路;而採用最先進的分析方法,才能確保明智地評估並運用相關資料。

資訊圖表

能源生態體系

隨著發電方式日新月異,以及配電、儲電和用電技術推陳出新,當今的能源生態體系也益趨複雜。例如,多間小型再生能源發電商聯合起來,就有可能扮演大型發電廠的角色。如此一來,就需要「智慧電網」來處理饋電波動的情形。讓我們帶您一同探索能源情勢,和相互依存的產業生態。

Energy Use

Saving energy and using it better

The cleanest energy is the energy that isn’t needed. There is a huge potential for energy conservation, especially in buildings, industry and transportation. Saving energy and using energy more efficiently are the two main factors involved in creating a sustainable energy supply for the future. This can be achieved by controlling energy consumption and integrating energy-saving products and solutions in buildings, industry and transportation.
Electric engines account for nearly two-thirds of the electric energy used in industry, for example for conveyor technology or pumps. With optimized solutions, the energy consumption of industrial drives can be lowered by up to 30 percent. Worldwide, about 40 percent of energy is consumed by buildings. Here too a lot can be achieved: through heat insulation and pumps, smart building technology, or efficient lighting.

40%
of the world's
energy is consumed
by buildings
21%
of greenhouse gas
emissions come
from buildings
Up to 40%energy savings can be realized through
Intellingent Building Automation

Energy Storage

Integration of renewable energy sources

Today’s energy mix leads to fast-changing imbalances between generation and load, impacting grid stability and power quality. Battery storage can act as an energy consumer as well as producer. This combination helps to improve grid stability and enable greater integration of renewable energy sources. Thus the grid can utilize more available energy.  

Alternative you can feed surplus power into an electrolyzer, which uses electricity to decompose water into hydrogen, and oxygen and generates heat. The obtained hydrogen can be stored and used to fuel a gas turbine and in several industrial processes.

Since the supply of power from wind is
irregular, power storage and converting
systems will be a necessity.
Battery StorageHydrogen Storage

Renewables

Infinite potential for sustainable energy

Wind, photovoltaik, small hydropower plants and biomass greatly contribute to meeting power demand and environmental awareness.  Especially offshore wind power plants with an installed generating capacity in the triple-digit megawatt range are already in operation and deliver great amounts of electricity with a high degree of continuity. But a growing number of onshore wind farms are being sited in regions with moderate to low wind speeds. Therefore we offer a new generation of wind turbines, which extract the maximum energy yield from low to moderate wind velocities.

Also solar energy has a great potential and is an inexhaustible energy source. As a long-term, reliable source of energy, the sun provides a huge annual amount of energy. Thanks to the technological advance of recent years and the development of the photovoltaics market, PV systems are now ready for large-scale production of electricity. And if we would like to turn water into energy small hydropower plants have proven to be a sustainable source of energy as well.

For example Germany. “In 2030, there will be 44,100 wind turbines along
with 3,000,000 photovoltaik systems.”

Central Power Generation

High-efficiency power generation

If clouds block the sun or the wind dies, power fluctuations must be balanced out quickly. Gas-fired power plants that can be started up quickly are ideal for this. Combined with a steam turbine, the world´s most efficient combined heat and power plant (CHP) from Siemens can convert approx. 61,5 percent of the energy from natural gas into electricity. Thanks to its CHP concept the overall fuel efficiency increases to 85 percent.

Bringing out the best:

World records at the
Lausward Unit “Fortuna”,
Duesseldorf

Power output
603.8 MW(el)
Plant net efficiency ~61.5 percentSteam extraction district
heating 300MW(th)

Financing

Intelligent financing solutions

When cities and buildings look for technologies to reduce their energy consumption, smart financing solutions are often needed to overcome the shortage of funds. When engineering and financing solutions come together, buildings can unlock huge energy saving potential – in consumption and in cost. A good example of this is Siemens' energy performance contracting for building technologies – a combination of consulting, modernization services and customized financing. With this, customers do not need to make any initial investment; they simply use the energy cost savings to pay the installments.

Worldwide, Siemens has modernized more than 5,200 buildings this way, with more than €1 billion in savings and more than ten millions tons of CO2 reductions.

generateSavingsfinanceInvestmentsSelf-financing
cycle

Energy performance contracting:
a self-financing cycle

Microgrid

Intelligent electricity networks

In the future, not only large plants but also millions of small and medium-sized power producers will feed electricity into the grid. More and more former consumers of energy are becoming producers as well. This fact, and the fluctuating feed-ins of renewable energy, make intelligent power grids necessary for power distribution. With “Smart Grids” like these, Siemens helps to achieve the right balance between electricity production and demand - throughout the world, and here in Germany.

5 times as much power
produced as consumed

The village of
Wildpoldsried produces
5 times more power from
renewable sources than it
consumes.

Natural Gas

A major backbone for the world’s power supply

Natural gas accounts for around 25% of the global energy demand. The proven reserves climb new highs, based on deep sea exploration and unconventional resources. As the cleanest fossil energy resource natural gas will continue to increase its share of the global energy mix, growing at 1.8% per year until 2035. Gas trade is primarily carried out as Liquefied Natural Gas (LNG) and by pipelines. Mission critical technology from Siemens makes the total process from production of gas via transportation to electrical power more safe and efficient.

Growing importance
of natural gas globally

Primary Energy (Share)Source: BP Energy Outlook 2016 (base case)

Power Transmission

Low-loss energy transmission

Should primarily be used where they occur in abundance: solar energy in sun-drenched areas and wind energy on the high seas. Therefore, long-distance networks must be further expanded, beyond national boundaries, using classic overhead lines, cables or gas-insulated lines. Besides classical high-voltage AC connections, high-efficiency power superhighways with high-voltage direct-current (HVDC) technology can be used for very long distances.

For example, in a HVDC Technology project in China, Siemens has shown that around 95 percent of the electricity makes it to the consumers, even over a distance of 1,400 kilometers and at a transmission capacity of 5,000 megawatts.

Delivering electricity right to where it is needed.

Power Distribution

Always well supplied

The requirements on power distribution and therefore on medium- and low-voltage grids are increasing continuously. Changing directions of power flow, load and voltage fluctuations, which are caused especially by the strongly growing number of power supplies from volatile power sources, e.g. photovoltaic/biogas plants and wind farms, make the distribution grids of today go to their capacity limits. The solution is an active distribution grid with intelligent transformer substations as key components. These contribute to an active load management in the distribution grid and enable an automatic and fast fault clearance in case of disturbances.

How to reduce mean down time from hours to seconds

Self-healing grid for Rotterdam harbor district Stedin, Netherlands

System restart in less
than a minute

Grid Control & Applications

Information technology is what we need to get the meter data and the consumption data into the system so that we can measure consumption and draw the necessary conclusions. Automation technology makes the meter data available for outage management and outage measurement in the grids. So this is where operations technology and information technology become one. The collected data is stored and analyzed, in the interests of stable and efficient power supply.

The enabling factor for all of Siemens’ cross-sectoral solutions is a smart grid that allows an intelligent energy management.

From Big Data to Smart Data
680,000,000
smart meters
are estimated to be installed globally
leading to 280
petabytes of data a year
storage capacity of
22,400,000
BluRay discs

Oil

Crude oil supply, the dominant primary energy source

Oil consumption is expected to grow and crude oil remains the dominant primary energy source for the next 20 years. Especially transport fuel is dominated by oil, its low relevance in electrical power generation will further decrease. Oil reserves are enough not at least thanks to exploration and production in deep sea regions and opening production from unconventional resources like oil sands. Furthermore, enhanced oil recovery technologies for mature fields enable to get more out of a field. Siemens innovative technology makes production, transportation and processing more efficient and environmentally compatible.

Global oil demand by sectormboe/d = million barrels of oil equivalent per day
  • Electricity generation
  • Resid./comm./Agriculture
  • Other industry
  • Petrochemicals
  • Transportation
Source: OPEC, World Oil Outlook 2015 (reference case)

智慧科技

利用劃時代解決方案,開創未來能源格局

為了確保在現今和未來,都能有高效率和可靠的能源供應系統,西門子推出各種實體及數位產品、技術及解決方案 ─ 包括最先進的壓縮機、渦輪機和發電機,以及虛擬發電廠、智慧電網管理和創新儲存解決方案。西門子透過創新技術、產品及和解決方案,消弭能源供應落差,並提供更聰明的發電、輸電和配電方式。

西門子協助客戶分析能源系統需求,並開發客製化解決方案,進而全面克服能源轉換鏈的挑戰。西門子的產品組合涵蓋各種技術和專業,有助於實現經濟效益和可靠的能源供應,同時兼顧資源匱乏的問題,並避免氣候變遷加劇。進入虛擬展示間瀏覽產品組合。

Explore the view
by swiping your finger
in horizontal motion

Explore 360° view
by moving the mouse
(with pressed left button)

Conventional power plants

Fossil Resources

Fossil fuels will continue to account for a large share of the future energy mix

  • Natural gas will remain the main fossil energy source, due to its relatively low CO2 emissions,
  • New reserves and production technologies will make gas available for the long term
  • Oil will be used less in power generation, but is the basis for many other products and processes
  • Oil production becomes more complex: more technology per barrel is needed
  • Coal is the most plentiful and widespread fossil energy source
Learn more

Combined Cycle Power Plants

Gas-fired power plants provide reliable, efficient and clean energy

  • Simple cycle power plants (gas turbine and generator) ensure flexibility for various ways of operation
  • In combined cycle power plants, exhaust heat from the gas turbine is used to produce steam for the generation of additional electricity
  • In power plants with Combined Heat and Power the overall efficiency rises to 85%
  • Siemens services increase efficiency, improve flexibility and prolong an assets‘ service life
Learn more Learn more

Steam Power Plants

State of the art steam power plants will remain the backbone of many energy systems

  • State of the art coal fired power plants for best efficiency at base load operation
  • Innovations improve plant performance, start-up times and efficiency in part load operation
  • Siemens steam turbines (range: 45 kW to 1,900 MW) make best possible use of steam from diverse fuels and heat sources
  • Siemens steam turbines are persistent and low-maintenance
  • Modernizing existing steam turbine generator equipment can be more cost-effective and faster than the installation of new equipment
Learn more

Nuclear Power

The importance of nuclear power will remain high on a global scale

  • Despite the expected decrease of nuclear power generation, the absolute generation capacity will still rise
  • Relatively low fuel cost of nuclear-powered steam turbine generators make equipment modernization and life extension programs often more lucrative and faster than the installation of new plants
  • Siemens provides services for the modernizing of the turbine generator and its auxiliaries during scheduled outagese
Learn more

Renewable energy

Wind Power

On its way to a profitable future

  • Offshore wind power is the renewable energy source with the greatest energy potential
  • Wind power plants with a capacity in the triple-digit megawatt range are already in operation
  • Wind turbines greatly contribute to meeting power demand and environmental awareness
  • Onshore wind power plants are a leading technology for distributed power generation
  • More and more small-scale wind power plants complement private power generation
Learn more

Hydropower

Large hydropower plants are the only renewable power plants that can steadily deliver large quantities of electricity

  • Siemens is a shareholder of VoithHydro, a one-stop supplier of equipment for hydropower plants
  • Small and large hydro power plants work on the same principle
  • The power of the tides is a nearly untapped but very efficient source of clean energy. Ocean power plants’ energy yield is precisely predictable
Learn more

Solar Power

Solar power converts the sun’s energy into electricity

  • As a one-stop supplier of key components of concentrated solar power plants, Siemens is able to offer products customized for the needs of each solar field, optimally combined in a so-called power block solution
  • Modern steam turbines for solar power plants have a capacity range from 1.5 MW to more than 250 MW
  • A power block solution from Siemens can be integrated seamlessly into an existing combined cycle or coal fired power plant. Innovative control systems enable the full integration of solar power plants
Learn more

Biomass

The use of biomass as a fuel is CO2-neutral

  • Modern biomass power plants achieve an efficiency of over 80% generating electricity and district heat
  • Siemens turbine generator sets have been deployed in over 100 biomass-fueled plants in the past decade
  • The reliability and availability of steam turbine and generator are especially important
  • Siemens services range from exclusive framework contracts to remote monitoring, helping boost a plant‘s performance
  • Inspections, preventive maintenance, condition-based monitoring, and replacement parts programs can be adapted individually
Learn more

Storage

Hydrogen Storage

Turning electricity into a synthetical gas

  • Surplus power from renewable sources is fed into an electrolyzer, which uses electricity to decompose water into hydrogen and oxygen
  • The hydrogen can be stored and used in industrial processes
  • Siemens has developed an electrolysis system based on proton exchange membrane (PEM) technology, which allows large volumes of energy to be stored
Learn more

Battery Storage

Quick power for peak load periods.

  • Modular storage units using lithium-ion accumulators can quickly provide electricity when needed
  • Ideally suited for load regulation and voltage stabilization
  • Energy storage can be applied in micro grids (e.g. industries) with renewable power generation to ensure a self-sufficient, reliable power supply
Learn more Learn more

Pumped Storage Power Plants

  • At periods of low power demand, reservoirs, e.g. on hilltops, are filled with water using electric pumps
  • During times of peak power demand the water is released to generate energy via hydro turbines
Learn more

Energy management

Transmission

Strengthening the power highways of the energy system

  • Siemens’ AC and DC power transmission solutions help bridge the longest distances safely and reliably
  • Advantages of Siemens high-voltage products: short commissioning times, a long service life, excellent earthquake safety
  • Siemens provides transformers for every requirement – from compact distribution transformers to large power transformers with ratings over 1,000 MVA
Learn more

Distribution

Delivering energy reliably where it is needed – a consistent portfolio for medium- and low-voltage applications

  • Ensure that electricity reliably reaches the consumers
  • Applicable for city and utility grids, industrial applications and infrastructures
  • Fundamentally important for a reliable, efficient, and stable power supply
  • Siemens has a long-standing experience for planning and design, innovative software and technology solutions and know-how with repairs, maintenance and updates to improve the efficiency and reliability of power supply systems
Learn more Learn more Learn more

Smart Grid

Digitalization drives change in energy systems

  • Smart Grids enable a bidirectional flow of energy and information
  • They are required for the integration of more renewable energy sources in the network
  • Power providers can run their plants more efficiently with data gained from Smart Grids
Learn more

Energy Consumption

E-Mobility

The mobile aspect of Smart Grids

  • Electric vehicles operate emission-free and can be perfectly integrated into a Smart Grid
  • They can serve as mobile power storage units when renewable power generation exceeds demand
Learn more Learn more

Commerce and Production

Industrial consumers are becoming prosumers interested in energy efficiency potentials

  • Large productions plants with their own power plant feed power into the public grid and sell it
  • Due to their complexity business facilities that require large amounts of power often have a high energy efficiency potential, which can be leveraged through energy-saving building technologies
  • Siemens helps companies to save energy, preserve resources, and sustainably protect the environment while reducing costs
  • With innovative building technology solutions Siemens enables high energy efficiency throughout the entire lifecycle of buildings
Learn more

Industry

Reliable energy and efficiency know-how for industrial applications

  • Industry accounts for a high share of the total energy consumption (Germany: nearly half the total)
  • Savings potential: more efficient technologies, storage solutions, and Smart Grid structures
  • Energy and resource-efficient production gives industrial companies a competitive edge and benefits the environment
  • Siemens technologies minimize the use of energy and resources in manufacturing and enhance productivity
  • Reliable power distribution is the basis for the stable and efficient operation of all industrial applications
  • Siemens solutions ensure a reliable, efficient, and stable power supply for industrial applications
Learn more

Private

Smarter use of electricity

  • Smart meters in private households are a key to Smart Grids
  • They enable flexible electricity tariffs, optimize electricity consumption, and help avoid expensive consumption peaks
  • In the future, smart home appliances could be controlled to achieve optimal cost and energy efficiency
Learn more

產品概覽

為您精心準備的產品

西門子產品項目涵蓋完整的能源轉換鏈,供應各種發電、輸電及配電產品,適合所有型態的能源應用。請在此瞭解我們的專業及服務,探索最適合您的方案。

新聞及活動

新聞及活動

案例參考

案例參考

image
image
image