Molecular Imaging Agent Coupled with “Motion Frozen” Processing Improves Heart Imaging

Study finds that a molecular imaging agent combined with post-scan image processing technology could result in crisper pictures of the heart.

Salt Lake City, Utah, June 7, 2010 – Molecular imaging of the heart just got better, according to a study revealed at SNM’s 57th Annual Meeting. Combining a potential new imaging agent with a molecular imaging technique that reduces blur caused by the motion of the heart and lungs could lead to unprecedented image quality when conducting myocardial perfusion imaging, a procedure used to evaluate blood flow to the heart.

“Both cardiac and respiratory motion degrade image quality by adding some unwanted blur,” said Ludovic Le Meunier, Ph.D., lead researcher and staff scientist for Siemens Healthcare, Knoxville, Tenn., based at Cedars-Sinai Medical Center, Los Angeles, Calif. “Our objective in this work was to provide the highest myocardial perfusion image quality by using a promising heart imaging agent and correcting the motion of those organs. In conjunction, these tools can provide unprecedented diagnostic capability for clinicians evaluating heart disease.”

The new imaging agent, called flurpiridaz F 18 injection, uses a fluorine-18 (F-18) based radioisotope, and while it is still in clinical trials the compound has been shown to facilitate very high quality imaging of the heart. Other PET agents used to image the heart have a much shorter half-life and need to be produced within an on-site cyclotron, which limits access. Some agents can be produced on site with a generator, but image quality appears not to be as high. F-18 has a half-life of 108 minutes and therefore can be delivered to imaging centers located within a wider radius, with no compromise to image quality.

The technology used in this study included high-definition, or “HD,” positron emission tomography, a technique that images the body’s physiological functions and automatically corrects distortions that occur during scanning. Next, researchers used post-scan image processing tools called respiratory gating and “motion frozen” cardiac gating, which cut out or otherwise compensate for...
the motion of these organs during scanning. The result is virtually motion-free myocardial perfusion imaging.

This clinical trial was led by Daniel Berman, M.D., director of cardiac imaging and nuclear cardiology at Cedars-Sinai Medical Center. Motion-frozen technology was developed in collaboration with Piotr Slomka, Ph.D., a research scientist at Cedars-Sinai and professor of medicine at the University of California, Los Angeles.


The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 48,000 employees worldwide and operates around the world. In fiscal year 2009 (to September 30), the Sector posted revenue of 11.9 billion euros and profit of around 1.5 billion euros. For further information please visit: www.siemens.com/healthcare.