In December 2008, Deutsche Bahn awarded Siemens Mobility a contract for 15 eight-unit high-speed trains.

The Velaro® train for Germany (Class 407) is based on the Velaro platform, which is the fastest currently operating high-speed train in the world. High-speed trains of this type are already operating reliably in Spain and in China. In the near future, the Velaro RUS will go into service between Moscow and St. Petersburg.

The Velaro D, a version that is the result of further development work, will be delivered to Deutsche Bahn in the 3rd quarter of 2011. The trains are scheduled to commence serving their new area of operations when the winter timetable starts: As multi-system trains, they can be launched in Belgium, Germany, France – on the new high-speed Rhine-Rhône line among others – and in Switzerland. The Velaro D can be coupled to the ICE 3. This enables flexible use of the vehicle in the German timetable as well.

Technical data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum speed</td>
<td>320 km/h</td>
</tr>
<tr>
<td>Train length</td>
<td>200 m</td>
</tr>
<tr>
<td>Voltage system</td>
<td>15 / 25 kV AC and 1.5 / 3 kV DC – maximum</td>
</tr>
<tr>
<td>Traction power</td>
<td>8,000 kW</td>
</tr>
<tr>
<td>Brake systems</td>
<td>Regenerative, eddy-current brake, pneumatic</td>
</tr>
<tr>
<td>Number of axles</td>
<td>32 (16 driven)</td>
</tr>
<tr>
<td>Wheel arrangement</td>
<td>Bo'Bo'+2'2'+Bo'Bo'+2'2'+2'2'+Bo'Bo'+2'2'+Bo'Bo</td>
</tr>
<tr>
<td>Number of bogies</td>
<td>16</td>
</tr>
<tr>
<td>Axle load</td>
<td>< 17 t</td>
</tr>
<tr>
<td>Number of cars / train</td>
<td>8</td>
</tr>
<tr>
<td>Number of seats</td>
<td>485 / 99 / 386 (total / 1st / 2nd Class)</td>
</tr>
</tbody>
</table>
Multiple-unit train with astounding transport efficiency – flexible and comfortable
The Velaro D is a multiple-unit trainset in which the traction and all the technical modules are distributed underfloor over the length of the train. Thus, the full length of the train is available to the passengers, offering 20% more room than other train concepts. During peak hours, two additional people per square meter of standing space can be accommodated and transported.

The interior of the Velaro D has a modular design; its fixtures, fittings and equipment can be altered quickly and flexibly. In future, it will be possible to integrate additional baggage racks or supplementary face-to-face table arrangements overnight. This enables compliance with any altered requirements resulting from the operating situation.

Exemplary energy efficiency
Knowledge about aerodynamics was collected and evaluated systematically from Velaro vehicles operating in Germany, Spain and China. New aerodynamic measures were tested on the Velaro in China. Further development of the Velaro platform was a direct result of this work, which is visibly illustrated for the first time by the new Velaro D: Panel covers for the roof-mounted equipment, bogies and inter-car gangways reduce power consumption. A high roof that starts in the middle of the end car reduces the sonic boom during movement through tunnels, improves air resistance and reduces exterior noise. Roof-mounted equipment, such as pantographs and air-conditioning units, are completely covered by panels. Spoiler, nose and front section have been aerodynamically optimized. The brake system of the Velaro is also energy-efficient: From the beginning of the 1990s, its electric brake has made it possible to feed braking energy back into the supply network. The effect: 10% energy savings and reduced mechanical wear.

The clear advantage: Optimized performance characteristics
The multiple-unit concept is characterized by the following operational advantages:
- Better leverage of the adhesion (coefficient) during acceleration as 50% of the axles are driven.
- Capability to run on steeper line sections with gradients of up to 4 per cent.
- The evenly distributed weight over the entire trainset leads to lower individual axle loads. Due to this uniform distribution (of weight) over the entire multiple-unit train, the individual wheelsets have to bear less weight. This reduces track wear and maintenance requirements of the running gear. The axle load per wheelset is below the internationally stipulated maximum of 17 t.

Tractive effort / speed curve (exemplary)
Additional benefits: Comfortable ride
The evenly distributed weight also improves the running characteristics and, therefore, travel comfort:
- The selected train length of 200 m is perfect with regard to the regulations of the Technical Specification of Interoperability (TSI), since this allows for the train to be driven with double heading at a total length of 400 m.
- Positive effect: For example, the Velaro D can run on a section of track initially as a double train and then be split up into two trains for different final destinations.
- For optimum customer benefits, the Velaro D will be designed in order to be detachable to vehicles of the existing ICE 3 fleet of Deutsche Bahn AG. Therefore, the Velaro D will be integrated seamlessly in the operations of Deutsche Bahn AG.

Impressive traction
The Velaro D has four identical, independent traction converter units. This principle generates clear advantages in continuous operation:
- Any failure of one converter will not affect the remaining units. This enables the train to safely reach its destination with 75% of its maximum rated traction power.
- Low-maintenance three-phase asynchronous motors with cage rotors ensure a high level of availability.

The result
A concept of space economy that ensures pleasant traveling for the passengers and maximum freedom of movement at the same time – in all parts of the two car classes.

Continuous provision of information
The passenger information system is based on the full range of experience and incorporates advanced technologies. In all car classes, video screens that are clearly visible from every seat provide information on the train route and on further offers.

Perfect control
The Train Communication Network (TCN), consisting of the train bus (WTB) and the vehicle bus (MVB), ensures a smooth and reliable data transfer between the traction units of a train as well as between two coupled trains.

The consistently redundant design of the TCN system provides additional advantages:
- Significant improvement of the availability of the communications paths
- Savings in respect of hardware, installation dimensions, weight and life-cycle costs
- Increased data transparency and shorter data propagation delays due to reduction in the number of interfaces and subsystems
Efficient onboard power supply system
Maximum passenger comfort requires an especially efficient electric system. Bus bars installed throughout the train ensure a reliable power supply of the loads:

- Air-conditioning, ventilation and heating
- Fans and pumps
- Restaurant operation
- Lighting

Proven safety
Having been continuously advanced, the bogies from the ICE 3 of Deutsche Bahn AG contribute to the exemplary lateral guidance performance of the Velaro D. They also ensure maximum stability and, therefore, excellent running comfort.

Even more important than a rapid acceleration is a rapid deceleration. The electric brake of the Velaro D enables automatic distribution of the braking effort among the pneumatic and the regenerative brake systems. In order to reduce life-cycle costs, preference of installation is given to the wear-free regenerative feedback system and the eddy-current brake. Experience gained from the ICE 3- and Velaro trainsets is directly taken into consideration and leads to quickly and reliably deployable systems.

Summary
The Velaro D is the latest member of the Velaro family. In its advanced state of development, it unifies the knowledge gained from fleets presently in service, it integrates the current requirements of our customers and serves as a multiple-unit train that can be operated anywhere in Europe. With its capacity advantages, the consistent maturation of its systems in terms of reliability and life-cycle costs, plus the experience of the people building it, it represents the state-of-the-art benchmark for high-speed trains with distributed traction.