Prior to this year’s SPS IPC Drives fair, Europe’s leading trade fair for electrical automation, Siemens will be holding a web-based press conference for the German and international trade media.

Read more on p.4
Siemens’ portfolio for the brewing, beverages and edible oil industries

Not all beers are alike – for a beer sommelier hops and malt are the ultimate clues

Munich, Germany. The event that will be the prelude to this year’s drinktec, the world’s leading trade fair for the beverage and liquid food industry, is to be held on 15 September: the Beer Sommelier World Championship. This championship, held every two years, highlights not only the vast range of beers available and the sommeliers familiar with them but also the breweries. Siemens supports the championship in its capacity as a technology partner of and vendor of automation technology to breweries worldwide. Siemens will be showcasing its extensive portfolio of integrated automation and drive solutions for breweries and beverage producers at drinktec, due to open on 16 September 2013.

More and more beer enthusiasts are opting to undergo the two-week training required to qualify as a beer sommelier. All the courses scheduled for 2014 are already fully booked. A beer sommelier learns how to distinguish up to 100 different beer types on the basis of taste and aroma. The world’s best beer sommelier is selected every two years. The next Beer Sommelier World Championship will be held on 15 September 2013 in Munich. This year, competitors from 11 countries will eagerly await the final announcement of a jury composed of acknowledged experts.

There are over 5,000 beer varieties in Germany alone. Whereas in Germany the ingredients of beer are restricted to hops, malt, yeast and water only, other countries have been free to develop a gigantic range of beer types and formulae – from honey beer in Belgium to nougat beer in France. The sheer diversity of the beer world and constant new trends make the work of today’s beer sommelier increasingly challenging. Just as a wine sommelier can judge the quality of a wine, a beer sommelier is qualified to assess the quality of a beer. A beer sommelier can advise restaurant patrons which beer is best suited to a given dish and can compile appropriate beer lists for restaurant owners. But more importantly he is responsible within the restaurant for the presentation and the quality of the beer as served.

The current world champion is Sebastian B. Priller-Riegele. Just as the future world champion will be required to do, Sebastian Priller-Riegele had to outperform his co-competitors in beer tastings by detecting certain flavours or off-flavours in a range of beer samples. In the final phase of the championship, six finalists are required to savour and then classify a beer that is unfamiliar to them. The challenge here is to identify the sometimes many different hop varieties used in that beer’s formula.

The Doemens Academy, an internationally operating training and consultancy enterprise for the brewing industry, offers training courses leading to qualification as a beer sommelier. «
Siemens at the drinktec

Munich, Germany. The international brewing and beverage industry meets at the drinktec in Munich every four years. The next drinktec, acknowledged as the leading platform for the industry worldwide, will be held from 16 to 20 September. Siemens Industry, a longstanding engineering partner of breweries and beverage producers all over the world, will again be showcasing its products at its own booth. The engineering group will be presenting its comprehensive portfolio of integrated automation and drive solutions in Hall A4, Booth 107. At this year’s fair, Siemens’ main focus will include its DFT (Dairy Functional Toolset) software which complements the Simatic PCS 7 process control system with special functions for the dairy industry. By enabling dairies to precisely control specific workflows such as milk sampling, pasteurization, separation, production, and the cleaning of pipes and tanks, DFT is a tool for optimizing production processes throughout the industry. Moreover, DFT continuously collects and archives the production data. Other key exhibits include the OPL (Optimized Packaging Line) for bottling and packaging lines and solutions for optimizing energy management and energy-saving in beverage production. Visitors will also have an opportunity to find out more about the tried and tested Braumat process control system specifically designed for beer brewing applications. «

Siemens at the oils + fats

Munich, Germany. In parallel of drinktec, the oils + fats will be taking place from 18 to 20 September 2013. oils + fats is the world’s only trade fair focusing on the technology and trading of oils and fats. For the fifth time in a row, this international edible oils and fats fair will be held in Munich. Siemens Industry, a provider of solutions for the edible oil industry, will be present in Hall B0, Booth 312, where it will showcase its Advanced Process Control (APC), Condition Monitoring by means of smart process data management, energy saving options using energy data monitoring, the innovative level gauge system for bulk silos featuring Sitrans LR 560 in 78GHz technology and the Simatic PCS 7 process control system with integrated functional safety features compliant with ISO 51611. «
SPS IPC Drives Fair

Announcement:
Web-based press conference prior to the SPS IPC Drives Fair

Nuremberg, Germany. Prior to this year’s SPS IPC Drives fair, Europe’s leading trade fair for electrical automation, Siemens will be holding a web-based press conference for the German and international trade media. This press webcast will take place on Tuesday, 8 October 2013. Heinz Eisenbeiss, head of the Siemens booth (Hall 2, Booth 201) at this year’s SPS IPC Drives fair and head of Simatic Marketing will present an overview of this year’s Siemens booth and report on various new products. Personal invitations to register for the event will be sent out to journalists shortly. Current and new information on this press conference and the Siemens booth at the fair is available via the following links."
Precise Timing

Rugged Switch for Precise Timing in Smart Grids

Nuremberg, Germany/Concord, Canada. For Symmetricom, a leading vendor of precise timekeeping technologies, instruments and solutions, versatile interoperability and precise time synchronization are essential. Symmetricom therefore opted to include Siemens’ Ruggedcom RSG2288 switch in its SyncWorld Ecosystem program.

After extensive testing of Siemens’ Ruggedcom RSG2288 switch and its ‘Transparent Clock Mode’, this product becomes part of the Symmetricom’s SyncWorld Ecosystem program. RSG2288 is a fully managed, modular Gigabit Ethernet switch which was designed to meet the stringent requirements of energy suppliers and is compliant with IEEE (Institute of Electrical and Electronics Engineers) 1588 V2 and thus qualifies as a high-precision Ethernet-based timer for distributed network devices. High-time synchronization is essential for many applications, for example in power plants and substations to coordinate and reliably execute all switching operations within a power grid. Highly sophisticated measuring devices combined with the equally highly sophisticated ‘Precision Time Protocol (PTP)’, compliant with IEEE 1588, version 2, also open up new possibilities for applications in the field of so-called smart grids, i.e. intelligent, interactive networks in the infrastructure sector.

Symmetricom’s SyncWorld Ecosystem program is a tried-and-tested, multi-vendor end-to-end time synchronization solution. Its components ensure that accurate time data are disseminated simultaneously from a central point, the ‘Grandmaster Clock’, to all terminals within a network. That all these terminals are synchronized is an important factor in ensuring the safe and efficient operation of any smart grid.

Electric Power
www.siemens.com/ruggedcom/electricpower
Fürth, Germany. Reducing from two to one: Siemens Industry Automation Division has replaced two production facilities with a single new factory in Fürth. Siemens has invested 14 million euro in modernizing its facility in Fürth with a view to making its production of control cabinets and control systems for industrial applications more efficient and its operations more agreeable for its employees.

Siemens has been manufacturing high-demand electronic products for industrial applications at its facility in Fürth-Hardhöhe for over 50 years. These include mainly industry-specific products (Siplus), control cabinets and customized systems for automation technology. “The work processes in the old structure, spread over several buildings and several levels, were no longer in line with the requirements of a modern, world-class, flexible production system”, explained Karlheinz Kaul, CEO Siemens Business Unit Control Components and Systems Engineering. He continued: “Over the past few years we and our workforce team optimized our processes across the board, but we ultimately came to the conclusion that we needed a new, modern production facility to make the most of these modernized processes.”

The two original factories were demolished between January and May 2013. The rubble is to be integrated into the new factory building. This will obviate additional transportation totaling about 2,000 HGV trips and the associated CO₂ emissions. The official ground-breaking ceremony, staged by the company and local management, took place in mid-July. Production in the new facility is scheduled to commence in the first half of 2014. The new factory was designed to comply with the LEED requirements for certification as an ecologically sustainable building. «
Recycling better than multipurpose use

Green waste disposal and power generation for large-scale medical facilities

Nuremberg/Germany, Delft/Netherlands. The Dutch company Pharmafilter has developed a waste disposal model for large-scale medical facilities which combines wastewater treatment with waste disposal and biogas-based power generation. The Siemens Industry Automation Division supplied automation technology, process instrumentation, measuring and analyzing systems as well as the metrological concept for initial installation of the model in the Reinier-de-Graaf hospital in Delft. The project has resulted in reduced waste, contaminant-free wastewater, improved hygiene and simplified logistical processes.

The process technology implemented by Pharmafilter for the green solution trialed in the Reinier-de-Graaf hospital in Delft can be adapted and scaled up as required. The underlying concept entails the convergence of solid waste and wastewater flows, their combined treatment and the use of biodegradable disposables. From the extensive Siemens process analytics and instrumentation portfolio, Sitrans measuring instruments and Ultramat gas analyzers support the safe generation of biogas by supplying a continuous stream of precise information about temperature, flow rate, level or pressure. Siwarex load cells are used for determining the precise weight of the substrate used in the fermenter.

The waste disposal model used in Delft is based on the principle of recycling in preference to multiple use. In conventional hospitals, cutlery and medical utensils such as bedpans are gathered, cleaned, and transported to another location for repeated use. In Delft, these utensils are made of biodegradable materials: renewable raw materials based on starches and sugars. Biopolymers demonstrate the same properties as conventional plastics but are not based on mineral oils and can be fully biologically degraded. Instead of sending utensils or bedpans along the laborious journey needed before they can be re-used, everything is fed directly into special shredders without the need to be emptied, cleaned or handled in any other way. The shredders mill the waste and forward it via the hospital’s existing water/wastewater system to the on-site sewage plant.

The treatment of hospital wastewater poses a major challenge: Municipal sewage facilities are primarily designed for the elimination of biologically degradable materials and the removal of nutrients such as phosphorous and nitrogen compounds. Even the most up-to-date treatment methods are not able to eliminate high concentrations of drug residues, x-ray contrast media or pathogens. Even though no direct hazard to human health has yet been proven to result from these waste products, there is no doubt about their impact on the aquatic habitat, for instance as a result of waterborne hormonally active substances. In order to put a stop to pollution of the aquatic system by this type of residue, the use of decentral water treatment plants directly on the hospital site presents itself as the most practical
Waste containing fats and carbohydrates from the ward shredders, separated according to solids and fluids, is used as the substrate for anaerobic digestion in the fermenter. At just under 60 degrees Celsius, the biomass undergoes microbial transformation into substances including methane and carbon dioxide. The waste water flows through several purification stages, during which the biomass is separated by membrane modules and all sludge structures as well as colloidal matter are removed by means of ultrafiltration. Ozone treatment eliminates pathogens and drug residues. The last purification stage involving active carbon removes any still remaining medicine residues and hormone disrupting trace elements. As the average purification rate is at least 98 percent, and consequently well above the statutory requirement, the purified product may be safely introduced into the surface water or used for irrigation.

The generation and subsequent conversion of biogas from organic waste almost completely meets the plant’s own energy supply requirement. To achieve this, the complex processes taking place in the fermenter require optimum environmental conditions. Continuous process control using tailor-made measuring and analyzing systems plays a decisive role in ensuring the system’s success. If key parameters such as acid content or temperature are incorrect, the balance of the anaerobic process is compromised, resulting in total failure of the plant.

The green solution has proven a resounding success from every point of view. The volume of waste has been reduced by more than half, and the wastewater is almost free of contaminants. The use of disposable products has improved hygiene standards and driven down logistical costs. The scheme has also meant improved patient safety, a reduced workload for nursing staff and environmental benefits resulting from water purification and the use of waste matter as a source of energy. «
Precise identification
Engine hood and bodyshell inseparably linked

Nuremberg/Bremen, Germany. Daimler AG has opted to use the code reading system Simatic MV440 based on proven Siemens technology for process data acquisition in its bodyshell production section for the SL series. Simatic MV440 permits cohesive and precise process data documentation across the entire bodyshell manufacturing process as well as verification of production details. It is able to detect, for instance, which engine hood has been used in the vehicle, or which torque was applied to create individual screw connections.

During process data acquisition, the large number of individual bodywork components are correctly and unambiguously assigned to a certain vehicle. Daimler opted to use Siemens data acquisition technology for the bodyshell production of its SL Series in the Mercedes-Benz plant in Bremen. The selected code reading system Simatic MV440 reads and digitizes both bar and matrix codes right across the whole production process. In total, 20 readers from Siemens are in use. The codes read by the Simatic MV440 readers are forwarded to the Manufacturing Execution System (MES). Due to their extreme reading accuracy, the Siemens code readers may be relied upon to supply a correct identification – eliminating any need for human intervention and the associated scope for error.

On the MES level, as the hood and bodyshell are assembled, the engine hood and bodyshell-related process data are merged, and from this point remain inseparably linked. This allows irrefutable proof to be provided across the entire vehicle life of which engine hood was installed and even which torque level was applied to create the different screw connections. By optimizing the identification technology, the manufacturer now benefits from the assurance of seamless process data acquisition and documentation. «
Did you know ...?

... that Siemens has been developing RFID (radio frequency identification) systems for 30 years and, with over 400,000 RFID devices installed in production and logistics, is the market leader in Europe?

Being informed on the condition and location of components and products at any time – this is possible using any Siemens RFID system. With any such system, data on material flows and production processes are available for the entire manufacturing and distribution process. This means a total transparency that allows manufacturing, material flows and logistics to be accurately and optimally managed. «

RFID-Systems
www.siemens.com/rfid

Did you know ...?

... that water disinfection using chlorine gas was discovered one hundred years ago, and that the “Chlorinator” was the first chlorine gas feed system to be marketed just one year later?

It was back in 1913 that American inventors Charles F. Wallace and Martin F. Tiernan stumbled by chance on the use of chlorine gas to disinfect water. The “Chlorinator” unveiled by the two inventors in 1914 was the very first chlorine gas feed system and went on to take the world by storm. This process has since made a significant contribution to ensuring safe drinking water.

Siemens chlorine gas feeders, now forming part of the Industry Automation Division, are used for water disinfection and still marketed under the name of the inventors Wallace & Tiernan. Main fields of application include swimming pools and drinking water plants. Their design and operation are subject to strict controls. As a result of continuous further development over the decades, present-day systems offer the assurance of maximum safety for users.

The Siemens water treatment and disinfection portfolio now encompasses a broad spectrum of different processes. Alongside different methods for the preparation of chlorine dioxide, the company also supplies ultraviolet systems, electrolysis processes and membrane systems, as well as the relevant analyzers and controllers. «

Siemens Water Technologies
www.siemens.com/water
Siemens Industry has received the 2013 Company of the Year Award for Global Smart Machine Safety Networks provided by the business consulting firm Frost & Sullivan. The integrated solutions offered by Siemens Safety Integrated and subsumed under Totally Integrated Automation, Frost & Sullivan stated in its award laudation, offer clients the best value for money available on the market at the moment. Frost & Sullivan stated in its award laudation. The award laudation also praised Siemens’ extensive know-how, industry experience and deep application know-how. These key factors enable Siemens to be a one-stop shop for all machine safety needs and add incremental value through lifecycle management.

www.siemens.com/safety-integrated

Siemens and Eplan: Automated engineering processes mean good value for clients. The more automation a process incorporates, the higher the positive impact on its economic efficiency. This principle is now being applied to engineering processes. To this end, Siemens is combining forces with Eplan, the market leader in Germany in the field of ECAD systems. The purpose of this cooperation venture is to offer an interface between the two companies’ systems – Teamcenter and Eplan. This signifies the closing of a further gap within the PLM process, with clients now being offered an integrated solution for data management. The time-saving effect achieved by means of such automated data transfer translates into a major competitive edge and is a persuasive argument both for acquiring new clients and for strengthening the loyalty of existing clients.

www.siemens.com/applicationconsulting/cax
www.siemens.com/planning-efficiency

Siemens Industry Automation produces a new video showcasing its wide-ranging portfolio of robust, reliable and sophisticated electrical components for the railway industry. The video explains, in brief but readily understandable, where the various components are used and how they meet the specific requirements of railway technology.

http://youtu.be/AWMb7w82maQ

FM Logistic deploys Siemens Preactor software in all its European sites. The Preactor Advanced Planning and Scheduling Solution (APS) helps FM Logistic to optimize its operations Co-packing, which structures the flow of mechanized production line and / or manual lines for the scheduling more reliable delivery.

www.siemens.com/press/de/pressemitteilungen/index.php?content%5B%5D=I&content%5B%5D=ICS&content%5B%5D=IA&content%5B%5D=IMT&search=preactor&date-1-dd=15&date-1-mm=01&date-1=2013&date-2-dd=15&date-2-mm=07&date-2=2013&intern=1
Current press releases from Siemens-Division Industry Automation

Process control system improves production processes in the dairy industry
www.siemens.com/press/pi/IIA2013083423e

Current press releases
from Siemens PML Software, a Siemens-Division Industry Automation Business Unit

Latest Release of Siemens’ Solid Edge Software Helps Get Quality Products to Market Faster

Siemens Simplifies PLM Software Implementation; Provides Faster ROI
The Siemens Industry Sector (Erlangen, Germany) is the world’s leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers’ productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit www.siemens.com/industry

The Siemens Industry Automation Division (Nuremberg, Germany) supports the entire value chain of its industrial customers – from product design to production and services – with an unmatched combination of automation technology, industrial control technology, and industrial software. With its software solutions, the Division can shorten the time-to-market of new products by up to 50 percent. Industry Automation comprises five Business Units: Industrial Automation Systems, Control Components and Systems Engineering, Sensors and Communication, Siemens PLM Software, and Water Technologies. For more information, visit www.siemens.com/industryautomation


PressService-Download: www.siemens.com/industryautomation/pressservice

Press-Contact

Siemens Industry Sector
Industry Automation
Reiner Schönrock
Tel: +49 (0)911 - 895 7999
reiner.schoenrock@siemens.com

Siemens Industry Sector
Industry Automation
Peter Jefimiec
Tel: +49 (0)911 - 895 7975
peter.jefimiec@siemens.com

Siemens Industry Sector
Industry Automation
Evelyne Kadel
Tel: +49 (0)211 - 6916 1003
evelyne.kadel@siemens.com

Siemens Industry Sector
Industry Automation
Gerhard Stauß
Tel: +49 (0)911 - 895 7945
gerhard.stauss@siemens.com

Contact PressService:
Siemens Industry Sector
Industry Automation
Ursula Lang
Tel.: +49 (0)911- 895 7947
ursula.lang@siemens.com