Automated driving by rail

Positive impact of rail market transformation
Exponential growth of digitalization will change rail and road transportation enormously – and has already begun!
Positive impact of rail market transformation

Challenges in mainline, regional line and freight traffic

Potential for optimization through automatic train operation

"ATO over ETCS"

Outlook
Positive impact of rail market transformation

Challenges in mainline, regional line and freight traffic

Potential for optimization through automatic train operation

“ATO over ETCS”

Outlook
Current challenges of different railway operators and their expectations of automation solutions between the priorities of different requirements

<table>
<thead>
<tr>
<th>High Density mainline</th>
<th>Low Density mainline</th>
<th>Freight</th>
<th>Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Capacity increase on existing infrastructure</td>
<td>• Low operating costs</td>
<td>• Energy savings</td>
<td>• Precise stopping</td>
</tr>
<tr>
<td>• Mixed traffic</td>
<td>• Reduction of equipment</td>
<td>• Interoperability</td>
<td>• Robust high-end solutions</td>
</tr>
<tr>
<td>• Interoperability</td>
<td>• High safety/security requirements</td>
<td>• Equipment on the train</td>
<td>• Driverless train operation</td>
</tr>
<tr>
<td>• High availability of the overall system</td>
<td></td>
<td>• Driverless train operation</td>
<td>• High availability requirements</td>
</tr>
<tr>
<td>• High safety/security requirements</td>
<td></td>
<td>• High safety/security requirements</td>
<td>• Lower safety/security requirements</td>
</tr>
</tbody>
</table>
Siemens is global market leader with EUR > 3.0 bn order intake in the last five years for highly and fully automated mass transit solutions.

Highly automated (GoA 2)

<table>
<thead>
<tr>
<th>Solution</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing Linie 10</td>
<td>2008</td>
</tr>
<tr>
<td>Budapest Linie 2</td>
<td>2008</td>
</tr>
<tr>
<td>Guangzhou Linie 4+5</td>
<td>2008/10</td>
</tr>
<tr>
<td>Paris Linien 3, 5, 9, 10, 12</td>
<td>2009</td>
</tr>
<tr>
<td>Algiers Linie 1</td>
<td>2010</td>
</tr>
<tr>
<td>Nanjing Linien 2+1</td>
<td>2009/10</td>
</tr>
</tbody>
</table>

Fully automated (GoA 3-4)

<table>
<thead>
<tr>
<th>Solution</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istanbul Linie 1</td>
<td>2008</td>
</tr>
<tr>
<td>Suzhou Linie 1</td>
<td>2012</td>
</tr>
<tr>
<td>Guangzhou Guang-Fo</td>
<td>2010/12</td>
</tr>
<tr>
<td>Chongqing Linie 1</td>
<td>2011/12</td>
</tr>
<tr>
<td>Beijing Olympia Linie 8</td>
<td>2012/13</td>
</tr>
<tr>
<td>New York PATH</td>
<td>2017</td>
</tr>
<tr>
<td>Metro Nuremberg</td>
<td>2006</td>
</tr>
<tr>
<td>Barcelona, Linie 9</td>
<td>2009</td>
</tr>
<tr>
<td>Metro Paris Linie 1</td>
<td>2011</td>
</tr>
<tr>
<td>Sao Paulo Linie 4</td>
<td>2012</td>
</tr>
<tr>
<td>Budapest Linie 4</td>
<td>2014</td>
</tr>
<tr>
<td>Metro Riad</td>
<td>2018</td>
</tr>
</tbody>
</table>

Solutions for GoA 2-4

- CBTC/Trainguard MT
- Controlguide
- Sicas
- Westrace
- Airlink

New orders 2014/2015 (extract)

- Buenos Aires Linie C, Queens Boulevard New York City, Xian Linie 3 (China), Fuzhou Linie 1 (China), Sosa Wonsi (Korea)

Year = Commissioning/Start of Operation, GoA = Grade of Automation, ATO = Automated Train Operation, CBTC = Communications-Based Train Control, 1) Siemens Mobility Products/Systems/Solutions for Rail Automation
Opportunities for railway operators by increasing the grade of automation

- The preconditions for additional solutions in today's railway systems are excellent
- High potential for economic optimization
 - Energy saving
 - Increase in track capacity
 - Increase in operational flexibility
 - Increase of punctuality
 - Precise stopping
Positive impact of rail market transformation

Challenges in mainline, regional line and freight traffic

Potential for optimization through automatic train operation

“ATO over ETCS”

Outlook
Automation functions from mass transit can be adapted successfully for mainline

<table>
<thead>
<tr>
<th>Partially automated</th>
<th>Highly automated</th>
<th>Fully automated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised by driver</td>
<td>Reduced driver supervision</td>
<td>System is responsible</td>
</tr>
</tbody>
</table>

GoA – Grades of Automation according to IEC/EN 62290-1

1. **Driver in cab**
 - Ensure safe movement of train
 - **Automatic Train Protection** e.g. ETCS

2. **Driver in cab**
 - Drive train
 - **Driver Advisory Systems** DAS

3. **Train attendant on-board**
 - Supervise track
 - **Automatic Train Operation** ATO

4. **No staff on-board**
 - Supervise passenger transfer, train status, incidents and emergencies
 - **Driverless and Unattended Train Operation** DTO/UTO
ETCS has become the worldwide standard for automatic train control systems and is the fundament for a sustainable development of railways

Trainguard solutions for ETCS Level 2

- GSM-R or other radio system (e.g. TETRA)
- Driver-machine interface
- Interlocking
- RBC
- Ballise antenna
- Odometer
- Radar
- Eurobalise position calibration
- Eurobalise position calibration
- Track vacancy detection

ETCS = European train control system
RBC = radio block centre
ATC = Automatic Train Control
SBI = Safe Block Interface
RBC = Radio Block Centre
GSM-R = Global System for Mobile Communications - Railway
TETRA = Terrestrial Trunked Radio
Market tendencies

- Assistance solutions in low density and freight traffic segments are in high demand
- ATO over ETCS is in demand in the United Kingdom, Netherlands and Germany
- Fully automated driving (driverless/unattended)
 - Complex layout of tracks
 - It is not possible to completely isolate the network from any outside influences (e.g. with fences, over- and underpasses etc.)
- In addition to the technical challenges, the systems in Europe have to be harmonized
Positive impact of rail market transformation

Challenges in mainline, regional line and freight traffic

Potential for optimization through automatic train operation

“ATO over ETCS”

Outlook
ETCS and ATO in the railway system

Operational tier
- Operator
- Driver
- Communication/operational rules
 - Interlocking control
 - Vehicle control
 - Train control

Technical tier
- Route
- Vehicle
- ETCS

ATO
Overall system concept

Traffic Management System (TMS)
Coordinates train movements

European Train Control System (ETCS) trackside
Radio block centre and eurobalises
Provides safe movement authorities

ATS – ATO communications via ETCS and GSM-R radio

European Train Control System (ETCS) on-board
On-board equipment
Ensures safe train movements

Automatic Train Operation (ATO)
On-board equipment
Ensures optimum train movements
ATO allows an optimal utilization of capacity through a shortened headway due to a consistent mode of operation

- ATO ensures an exact realization of the speed profile at any time (minimal energy consumption at a fixed timetable)
- ATO stops more precisely
- Some notifications and warnings are suppressed by ATO to avoid confusion
ATO can reduce energy consumption by 15 to 20 percent

- The energy-optimal driving curve is calculated in realtime by the ATO and comprises four different types of driving: full acceleration, cruising, coasting and full braking
- The driving curve is optimized for every train run and is not based on a limited amount of profiles
- On top of that, ATO reduces wear and tear of brakes and CO₂ emissions
Positive impact of rail market transformation

Challenges in mainline, regional line and freight traffic

Potential for optimization through automatic train operation

“ATO over ETCS”

Outlook
Further developments are happening on the basis of ETCS

Within the scope of the EU initiative Shift2Rail, more aspects are developed further

European committee work

- Standardization of ATO over ETCS
- Same requirements for interoperability as with ETCS
 - Option 1: With ETCS as an integrated ATO
 - Option 2: ATO as a standalone product
Thank you for your kind attention