Tools


Siemens Worldwide

Pictures of the Future

Contact

Kontakt

sts.components.contact.mr.placeholder Sebastian Webel
Herr Sebastian Webel

Chefredakteur

Tel: +49 89 636-32221

Fax: +49 89 636-35292

Werner-von-Siemens-Straße 1
80333


sts.components.contact.mr.placeholder Arthur F. Pease
Herr Arthur F. Pease

Executive Editor English Edition

Tel: +49 89 636-48824

Fax: +49 89 636-35292

Otto-Hahn-Ring 6
81739 München

Pictures of the Future
Das Magazin für Forschung und Innovation
 

Nachhaltige Energieerzeugung

Der Hexcrete-Turm – mit Sechsecken in luftige Höhen

Windparks für die Stromversorgung in den USA werden heute von Stahlrohrtürmen mit einer Nabenhöhe von 80 Metern dominiert (Im Bild: Windpark in Iowa / USA). Ein neues Konzept soll nun Nabenhöhen von bis zu 140 Metern ermöglichen, wo der Wind stärker und gleichmäßiger weht.

Windenergie ist unerschöpflich. Ihr Potenzial lässt sich am besten ausschöpfen, wenn der Wind in Nabenhöhe der Windturbinen stark genug ist. Dank einer neuen Turmkonstruktion und eines neuen Fertigungskonzepts möchte ein Forschungsprojekt um Siemens in 120 bis 140 Metern Nabenhöhe die Windenergie nutzen und so die Stromgestehungskosten in den USA senken.

Oberhalb von 100 Metern weht der Wind stark und gleichmäßig. Windenergieanlagen mit höheren Turbinentürmen könnten davon profitieren und mehr Betriebsstunden erreichen – eine bessere „Windernte“ in den Regionen Europa und der USA, in denen oberhalb von 100 Metern günstige Windbedingungen herrschen und die einen hohen Bedarf an Strom haben. Corporate Technology (CT US) arbeitet mit der Iowa State University daran, ein neues Konzept für höhere Windturbinentürme nutzbar zu machen – den so genannten Hexcrete-Turm.

Im Projekt „Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights“ soll mit einer neuen Turmkonstruktion und einem neuen Fertigungskonzept Windenergie in 120 bis 140 Metern Nabenhöhe genutzt und die Stromgestehungskosten in den USA gesenkt werden. Corporate Technology in den USA ist für die Analyse und Optimierung der Turmkonstruktionen verantwortlich, die im Rahmen des Projekts entwickelt werden.

„Die Hersteller von Windkraftanlagen wollen schon seit Langem ‚höher hinaus‘, da das Windangebot in größerer Höhe gleichmäßiger und zuverlässiger ist. Das Projekt hat ganz klar das Potenzial, diese Vision wahr werden zu lassen“, sagt Kurt Bettenhausen, Leiter des Technologiefelds Automation & Control  bei Corporate Technology (CT) in den USA.

Hexcrete-Turm: Siemens Corporate Technology arbeitet mit der Iowa State University daran, das neue Konzept für höhere Windturbinentürme nutzbar zu machen.

Heute dominieren Türme aus Stahlrohren

Windparks für die Stromversorgung in den USA werden heute von Stahlrohrtürmen mit einer Nabenhöhe von 80 Metern dominiert. Die Türme werden in drei langen Segmenten gefertigt und transportiert und liegen mit einem Fußdurchmesser von circa 4,1 Metern knapp unter der Brückendurchfahrtshöhe auf Landstraßen. Wären die heute üblichen Türme um 20 bis 60 Meter höher, hätte dies einen höheren Energieertrag zur Folge. Das würde die Erzeugung von Energie aus Windkraft auch an Standorten wirtschaftlich rentabel machen, an denen dies momentan nicht der Fall ist.

Allerdings verursachen der Zusammenbau der Stahlrohre vor Ort und die vertikalen Nähte hohe Kosten und sie erfordern eine besondere Qualitätskontrolle. Hinzu kommt, dass die Stahlrohrtürme heute über weite Strecken transportiert werden müssen. Das ist weder effizient noch mit dem Umweltanspruch erneuerbarer Energien zu vereinbaren.

Beton statt Stahl

Professor Sri Sritharan von der Iowa State University arbeitet mit einem Team von CT US unter der Leitung von Suraj Musuvathy an der Realisierung höherer Windenergieanlagen. „Unser Schlüssel ist: wir verwenden Beton statt Stahl“, sagt Sritharan. Er arbeitet an der Entwicklung eines Turms aus vorgefertigten Betonteilen, die sich bis zur gewünschten Nabenhöhe aufeinandersetzen lassen.

Mehr Flexibilität: Beton ist in den USA im Vergleich zu Stahl überall verfügbar. So müssten im Vergleich zu bisherigen Stahlrohrtürmen die Betonsäulen eines Hexcrete-Turmes nicht über weite Strecken transportiert werden. Im Bild: LKW-Transport eines herkömmlichen Turmmoduls.

Namensgeber für den Hexcrete-Turm ist das Sechseck – die sechseckigen Betonsäulen, die nachträglich verspannt werden, und die sechseckige Turmsektion. Der gesamte Turm wird aus vorgefertigten Säulen und Platten aus Hochleistungs- bzw. aus Ultrahochleistungsbeton zusammengebaut.

Das CT-Team erarbeitet zusammen mit der Division Wind Power and Renewables Algorithmen für die 3D-Modellierung, Simulation und Optimierung. Mit diesen Algorithmen werden die Entwurfsalternativen des modularen Konzepts durchgespielt und die optimalen Konstruktionsparameter ermittelt, die sowohl eine Minimierung der Stromgestehungskosten ermöglichen als auch die bautechnischen und Konstruktionskriterien erfüllen.

Flexibler durch Module

Die Modulbauweise führt zu mehr Flexibilität beim Bau und Transport der Türme. Da sich ein modulares System aus Betonteilen per Sattelschlepper transportieren ließe, könnte auf die teuren Spezialfahrzeuge, die heute beim Transport der Stahltürme zum Einsatz kommen, verzichtet werden. Auch die weiteren Einschränkungen und Straßensperrungen, die heute mit höheren Türmen verbunden sind, könnten dann der Vergangenheit angehören. Die Modulbauweise mit Betonfertigteilen lässt beim Turmfuß auch einen Durchmesser von mehr als 4,1 Metern zu, sodass auch noch höhere Türme errichtet werden könnten. Größere Turmhöhen lassen sich nicht nur mit einer größeren Grundfläche sondern auch mit größeren Säulen- und Plattenmaßen oder entsprechenden Kombinationen erreichen. Und schließlich ist Beton im Gegensatz zu Stahl in den USA fast überall verfügbar. Das bedeutet kürzere Transportwege und damit geringere Kosten.

Das von der Iowa State University geleitete Hexcrete-Projekt wurde von der Abteilung Energy Efficiency & Renewable Energy des Department of Energy in den USA mit einer Million Dollar gefördert.

Natasha Azar