

# Unit substation solutions with type SIMOSEC primary switches quick reference guide 



## Siemens unit substation solutions

## Overview

Siemens offers a wide variety of unit substation designs to meet virtually any customer requirement. A unit substation consists of one or more transformers mechanically and electrically connected to, and coordinated with, one or more switchgear or switchboard assemblies. A secondary unit substation is defined as a unit substation whose outgiong section is rated below $1,000 \mathrm{~V}$.

A typical secondary unit consists of three sections:

- Primary: depending upon the specific application, this section accepts medium-voltage ( 2.4 kV to 27.6 kV ) incoming power
- Transformer: reduces incoming voltage to utilization voltage ( 600 V or less)
- Secondary: distributes power to, and provides protection for, outgoing feeders (600 V and less).

The key benefit of a secondary unit substation is that it economically brings power as close as possible to the loads, minimizing power loss and maximizing voltage regulation. It also enhances flexibility, using a system design concept that integrates a wide variety of components to tailor the equipment to the specific needs of each application.
Every component or assembly utilized in secondary unit substations is engineered to be an integral part of a complete system.
A secondary unit substation helps you:

- Reduce power losses
- Enhance voltage regulation
- Improve service continuity
- Increase functional flexibility
- Lower installation cost
- Efficient space requirements.



## Type SIMOSEC metal-enclosed, load-interrupter primary switch

## Features and ratings

- For application on systems up to 63 kA 15 kV and 20 kA 27.6 kV
- Load current switching rating 600 A , main bus continuous current rating 1,200 A
- Extremely compact footprint
- Meets ANSIIIEEE C37.20.3
- UL or C-UL Listing available
- Seismic rated up to IBC 2003
- Ideal for utility, construction and industrial applications
- Animated mimic diagram (mimic bus)
- High switching capacity 100 operations at 600 A - five times higher than ANSI requirements
High endurance - 1,000 mechanical operations
- Gas-insulated three-position switch disconnector, hermetically sealed for life inside a stainless steel vessel
- No maintenance or adjustment required on the switch module over life of the switch
- Integrated mechanical interlocking
- Switch disconnector combines the function of a load-interrupter switch (with closed-open indication) and a grounding switch (with open-ground indication), thus inherent design offers additional safety for the operators
- High-voltage current limiting fuses and cable terminations accessible only if the feeder grounding switch is in the grounded position
- Fuses and outgoing cables are front accessible, so SIMOSEC can be placed against the wall and maximize the use of available space
- Convenient viewing window for verification of primary contact position (visible break)
- Capacitive voltage indicators to show if the cable side of the switch is energized
- Configurations: individual feeder switches, transformer primary switches and switch lineups
- Main bus at top or bottom to suit application

Over 20 years experience and more than 350,000 switch-disconnector units installed


## Type SIMOSEC technical data and dimensions

| Rated voltage | Rated frequency | Rated shortduration powerfrequency withstand voltage | Rated lightningimpulse withstand voltage (BIL) | Rated short-time withstand current, two seconds | Fused shortcircuit current rating (FS panel only) | Maximum fused continuous current (not equal to fuse $E$ rating) |  |  | Main bus continuous current rating | Switch disconnector |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Single fuse FS-1 | Double fuse FS-2 | Triple fuse FS-3 |  | Continuous | Interrupting |
| kV | Hz | kV | kV | kA | kA | A | A | A | A | A | A |
| 5.0 | 50/60 | 19 | 60 | 25 | 63 | 325 | 575 | 600 | 1,200 | 600 | 600 |
| $\begin{aligned} & 8.25 \text { and } \\ & 15.0 \end{aligned}$ | 50/60 | 36 | 95 | 25 | 63 | 165 | 305 | 430 | 1,200 | 600 | 600 |
| 27.6 | 50/60 | 60 | 125 | 20 | 20 | 65 | 117 | 156 | 1,200 | 600 | 600 |


| Dimensions in inches (mm) | Cable switch CS | Fused switch FS | Metering <br> MT | Cable connection CC |
| :---: | :---: | :---: | :---: | :---: |
| Width | $\begin{aligned} & 14.8(375)^{1} \\ & 19.7(500)^{2} \end{aligned}$ | $\begin{aligned} & 14.8(375)^{1} \\ & 19.7(500)^{2} \\ & 29.5(750)^{3} \end{aligned}$ | $\begin{aligned} & 19.7(500)^{4} \\ & 29.5(750)^{4} \end{aligned}$ | $\begin{aligned} & 14.8(375)^{1} \\ & 19.7(500)^{2} \end{aligned}$ |
| Depth | $48.4(1,230)$ | $48.4(1,230)$ | $48.4(1,230)$ | $48.4(1,230)$ |
| Height | $\begin{gathered} 88.6-100.4 \\ (2,250-2,850) \\ \text { depending upon } \\ \text { arrangement } \end{gathered}$ | $\begin{gathered} 88.6-100.4 \\ (2,250-2,850) \\ \text { depending upon } \\ \text { arrangement } \end{gathered}$ | $\begin{gathered} \text { 88.6-100.4 } \\ (2,250-2,850) \\ \text { depending upon } \\ \text { arrangement } \end{gathered}$ | $\begin{gathered} 88.6-100.4 \\ (2,250-2,850) \\ \text { depending upon } \\ \text { arrangement } \end{gathered}$ |


| Maximum voltage (kV) | Fuse type | E-rating (open air) | Allowable continuous current (A) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FS-1 ${ }^{1}$ | FS-2 ${ }^{2}$ | FS-3 ${ }^{3}$ |
| 5.5 | 55GDMSJ10ES | 10E | 10 | ---- | ---- |
| 5.5 | 55GDMSJ15ES | 15E | 15 |  |  |
| 5.5 | 55GDMSJ20ES | 20E | 20 |  |  |
| 5.5 | 55GDMSJ25ES | 25E | 25 |  |  |
| 5.5 | 55GDMSJ30ES | 30E | 30 |  |  |
| 5.5 | 55GDMSJ40ES | 40E | 40 |  |  |
| 5.5 | 55GDMSJ50ES | 50E | 50 |  |  |
| 5.5 | 55GDMSJ65ES | 65E | 65 |  |  |
| 5.5 | 55GDMSJ80ES | 80E | 80 |  |  |
| 5.5 | 55GDMSJ100ES | 100E | 100 |  |  |
| 5.5 | 55GDMSJ125ES | 125E | 120 |  |  |
| 5.5 | 55GFMSJ150ES | 150E | 150 |  |  |
| 5.5 | 55GFMSJ175ES | 175E | 164 |  |  |
| 5.5 | 55GFMSJ200ES | 200E | 183 | 327 |  |
| 5.5 | 55GFMSJ250ES | 250E | 220 | 390 |  |
| 5.5 | 55GFMSJ300ES | 300E | 241 | 429 | 598 |
| 5.5 | 55GFMSJ350ES | 350 E | 269 | 478 | 600 |
| 5.5 | 55GFMSJ400ES | 400E | 302 | 536 | 600 |
| 5.5 | 55GFMSJ450ES | 450E | 325 | 575 | 600 |
| 17.5 | 175GDMSJ10ES | 10E | 10 | ---- | ---- |
| 17.5 | 175GDMSJ15ES | 15E | 15 |  |  |
| 17.5 | 175GDMSJ20ES | 20E | 20 |  |  |
| 17.5 | 175GDMSJ25ES | 25E | 25 |  |  |
| 17.5 | 175GDMSJ30ES | 30E | 30 |  |  |
| 17.5 | 175GFMSJ40ES | 40E | 40 |  |  |
| 17.5 | 175GFMSJ50ES | 50E | 50 |  |  |
| 17.5 | 175GFMSJ65ES | 65 E | 59 |  |  |
| 17.5 | 175GXMSJ80ES | 80E | 73 |  |  |
| 17.5 | 175GXMSJ100ES | 100E | 85 |  |  |
| 17.5 | 175GXQSJ125ES | 125E | 112 | 207 |  |
| 17.5 | 175GXQSJ150ES | 150E | 123 | 238 | 336 |
| 15.5 | 155GXQSJ175ES | 175E | 167 | 310 | 420 |
| 15.5 | 155GXQSJ200ES | 200E | 165 | 305 | 430 |

High-voltage fuse selection table.

## Example:

- 5,000 kVA, 12.47 kV transformer
- Full-load current 231.5 A
- Multiplier 1.33
- Current for fuse-size selection = $1.33 \times 231.5 \mathrm{~A}=308 \mathrm{~A}$
- Multiplier of 1.33 for transformer with fan-cooled rating $125 \%$ of self-cooled rating (adjust multiplier for differing fan-cooled transformer capability)
- Fuse rating $=2 \times 175 \mathrm{E} /$ phase (FS-2).


## Footnotes:

${ }^{1}$ FS-1 one fuse barrel per phase
${ }^{2}$ FS-2 two fuse barrels per phase
${ }^{3}$ FS-3 three fuse barrels per phase.

Ratings include:

- Primary voltage $2,400 \mathrm{~V}$ to $13,800 \mathrm{~V}$
- Secondary voltage 208 V to 600 V
- Temperature rise $150^{\circ} \mathrm{C}$ for aluminum windings $80^{\circ} \mathrm{C} / 115^{\circ} \mathrm{C}$ for copper windings
- Standard kV BIL
(high voltage/low voltage) 60/30 for aluminum windings 95/30 for copper windings.

1. $18^{\prime \prime}(457 \mathrm{~mm})$
2. 4" (102 mm)
3. Ground bus
4. High-voltage terminal
5. Fan-control panel when required
6. High-voltage terminal air chamber (optional)
7. Low-voltage terminal air chamber (optional)


## Transformers -dry-type VPI/VPE

| Winding material | Low-voltage switchgear or switchboard coordination |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | kVA | Dimensions in inches (mm) |  |  | Weight in lbs (kg) |
|  |  | Height | Width | Depth |  |
| Aluminum | 300 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 4,600 (2,087) |
| Aluminum | 500 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 4,800 $(2,177)$ |
| Aluminum | 750 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 5,800 (2,630) |
| Aluminum | 1,000 | $90(2,286)$ | $102(2,591)$ | $60(1,524)$ | 7,000 (3,175) |
| Aluminum | 1,500 | $96(2,438)$ | $102(2,591)$ | $60(1,524)$ | 9,200 (4,173) |
| Aluminum | 2,000 | $102(2,591)$ | $102(2,591)$ | $60(1,524)$ | 11,000 (4,990) |
| Aluminum | 2,500 | $108(2,743)$ | $112(2,845)$ | $60(1,524)$ | 12,200 (5,534) |
| Aluminum | 3,000 | $108(2,743)$ | $118(2,998)$ | $60(1,524)$ | 14,100 (6,396) |
| Aluminum | 3,750 | $112(2,845)$ | $126(3,200)$ | $66(1,676)$ | 15,800 (7,167) |
| Aluminum | 5,000 | $132(3,353)$ | $138(3,505)$ | $66(1,676)$ | 17,000 (7,711) |



| Winding material | Low-voltage switchgear or switchboard coordination |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | kVA | Dimensions in inches (mm) |  |  | Weight in lbs (kg) |
|  |  | Height | Width | Depth |  |
| Cop | 300 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 6,000 (2,722) |
| Copper | 500 | $90(2,286)$ | $96(2,438)$ | $60(1,524)$ | 6,400 (2,903) |
| Copper | 750 | $90(2,286)$ | $102(2,591)$ | $60(1,524)$ | 8,000 (3,629) |
| ppe | 1,000 | $96(2,438)$ | $102(2,591)$ | $60(1,524)$ | 9,700 (4,400) |
| Copper | 1,500 | $102(2,591)$ | 108 (2, | 60 | 13,200 (5,987) |
| Copper | 2,000 | $108(2,743)$ | $112(2,845)$ | $60(1,524)$ | 17,400 (7,893) |
| Coppe | 2, | 11 | 12 | ) | , 000 (8,618) |
| Copper | 3,000 | $118(2,998)$ | $132(3,353)$ | $60(1,524)$ | 22,000 (9,979) |
| Copper | 3,750 | $126(3,200)$ | $132(3,353)$ | $66(1,676)$ | 27,000 (12,247) |
| Copper | 5,000 | $132(3,353)$ | $138(3,505)$ | $66(1,676)$ | 30,000 (13,608) |


| Winding material | Low-voltage switchgear or switchboard coordination |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | KVA | Dimensions in inches (mm) |  |  | Weight in lbs (kg) |
|  |  | Height | Width | Depth |  |
| Aluminum | 300 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 5,500 (2,495) |
| Aluminum | 500 | $90(2,286)$ | $90(2,286)$ | $54(1,372)$ | 6,300 (2,858) |
| Aluminum | 750 | $90(2,286)$ | $96(2,438)$ | $60(1,524)$ | 7,800 (3,538) |
| Aluminum | 1,000 | $96(2,438)$ | $102(2,591)$ | $60(1,524)$ | 9,500 (4,309) |
| Aluminum | 1,500 | $102(2,591)$ | $108(2,743)$ | $60(1,524)$ | 11,500 (5,216) |
| Aluminum | 2,000 | $108(2,743)$ | $112(2,845)$ | $60(1,524)$ | 13,800 (6,260) |
| Aluminum | 2,500 | $112(2,845)$ | $126(3,200)$ | $60(1,524)$ | 16,200 (7,348) |
| Aluminum | 3,000 | $118(2,998)$ | $132(3,353)$ | $60(1,524)$ | 19,200 (8,709) |
| Aluminum | 3,750 | $126(3,200)$ | $138(3,505)$ | $66(1,676)$ | 25,000 (11,370) |
| Aluminum | 5,000 | $132(3,353)$ | $144(3,658)$ | $66(1,676)$ | 28,000 (12,701) |
| Copper | 300 | $90(2,286)$ | $90(2,286)$ | $60(1,524)$ | 6,200 (2,812) |
| Copper | 500 | $90(2,286)$ | $96(2,438)$ | $60(1,524)$ | 7,000 (3,175) |
| Copper | 750 | $90(2,286)$ | $102(2,591)$ | $60(1,524)$ | 9,100 (4,128) |
| Copper | 1,000 | $96(2,438)$ | $112(2,845)$ | $60(1,524)$ | 10,600 (4,808) |
| Copper | 1,500 | $102(2,591)$ | $118(2,998)$ | $60(1,524)$ | 14,300 (6,486) |
| Copper | 2,000 | $108(2,743)$ | $118(2,998)$ | $66(1,676)$ | 18,200 (8,255) |
| Copper | 2,500 | $118(2,998)$ | $126(3,200)$ | $66(1,676)$ | 19,500 (8,845) |
| Copper | 3,000 | $126(3,200)$ | $132(3,353)$ | $66(1,676)$ | 23,500 (10,659) |
| Copper | 3,750 | $126(3,200)$ | $144(3,658)$ | $66(1,676)$ | 28,000 (12,701) |
| Copper | 5,000 | $132(3,353)$ | $160(4,064)$ | $66(1,676)$ | 35,000 (15,876) |

## Transformers -dry-type, cast coil

Ratings include:

- Primary voltage $2,400 \mathrm{~V}$ to $13,800 \mathrm{~V}$
- Secondary voltage 208 V to 600 V
- Temperature rise $80^{\circ} \mathrm{C} / 115^{\circ} \mathrm{C}$ for aluminum windings and copper windings
- Standard kV BIL (high voltage/low voltage) 60/30 for aluminum windings 95/30 for copper windings.

Ratings include:

```
Primary voltage
    25,000 V and below
Secondary voltage
    5,000 V and below
- Temperature rise
    55 
```

Weights, gallons of fluid and dimensions are for reference only and not for construction. Please contact Siemens for exact dimensions.


Elevation


## Transformers -liquid-filled type

|  | Dimensions in inches (mm) |  |  |  |  |  |  |  |  | Aluminum windings |  | Copper windings |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kVA | A | B | C | D | E | F | G | H | J | Gallons of fluid | lbs (kg) with fluid | Gallons of fluid | lbs (kg) with fluid |
| 500 | $\begin{gathered} 66 \\ (1,676) \end{gathered}$ | $\begin{gathered} 51 \\ (1,295) \end{gathered}$ | $\begin{gathered} 26 \\ (660) \end{gathered}$ | $\begin{gathered} 52 \\ (1,321) \end{gathered}$ | $\begin{gathered} 45 \\ (1,143) \end{gathered}$ | $\begin{gathered} 45 \\ (1,143) \end{gathered}$ | $\begin{gathered} 30 \\ (762) \end{gathered}$ | $\begin{gathered} 60 \\ (1,524) \end{gathered}$ | $\begin{gathered} 35 \\ (889) \end{gathered}$ | 300 | $\begin{gathered} 5,600 \\ (2,540) \end{gathered}$ | 310 | $\begin{gathered} 5,900 \\ (2,676) \end{gathered}$ |
| 750 | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 59 \\ (1,499) \end{gathered}$ | $\begin{gathered} 26 \\ (660) \end{gathered}$ | $\begin{gathered} 52 \\ (1,321) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 34 \\ (864) \end{gathered}$ | $\begin{gathered} 68 \\ (1,727) \end{gathered}$ | $\begin{gathered} 35 \\ (889) \end{gathered}$ | 360 | $\begin{gathered} 7,000 \\ (3,175) \end{gathered}$ | 370 | $\begin{gathered} 7,400 \\ (3,357) \end{gathered}$ |
| 1,000 | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 67 \\ (1,702) \end{gathered}$ | $\begin{gathered} 26 \\ (660) \end{gathered}$ | $\begin{gathered} 52 \\ (1,321) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 38 \\ (965) \end{gathered}$ | $\begin{gathered} 76 \\ (1,930) \end{gathered}$ | $\begin{gathered} 35 \\ (889) \end{gathered}$ | 420 | $\begin{gathered} 8,400 \\ (3,810) \end{gathered}$ | 430 | $\begin{gathered} 8,800 \\ (3,992) \end{gathered}$ |
| 1,500 | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 59 \\ (1,499) \end{gathered}$ | $\begin{gathered} 59 \\ (1,499) \end{gathered}$ | $\begin{gathered} 80 \\ (2,032) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 34 \\ (864) \end{gathered}$ | $\begin{gathered} 68 \\ (1,727) \end{gathered}$ | $\begin{gathered} 35 \\ (889) \end{gathered}$ | 400 | $\begin{gathered} 9,500 \\ (4,309) \end{gathered}$ | 420 | $\begin{aligned} & 10,000 \\ & (4,536) \end{aligned}$ |
| 2,000 | $\begin{gathered} 85 \\ (2,159) \end{gathered}$ | $\begin{gathered} 67 \\ (1,702) \end{gathered}$ | $\begin{gathered} 67 \\ (1,702) \end{gathered}$ | $\begin{gathered} 90 \\ (2,286) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 38 \\ (965) \end{gathered}$ | $\begin{gathered} 76 \\ (1,930) \end{gathered}$ | $\begin{gathered} 39 \\ (991) \end{gathered}$ | 520 | $\begin{aligned} & 12,000 \\ & (5,443) \end{aligned}$ | 500 | $\begin{aligned} & 12,800 \\ & (5,806) \end{aligned}$ |
| 2,500 | $\begin{gathered} 85 \\ (2,159) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 68 \\ (1,727) \end{gathered}$ | $\begin{gathered} 92 \\ (2,337) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 55 \\ (1,397) \end{gathered}$ | $\begin{gathered} 42 \\ (1,067) \end{gathered}$ | $\begin{gathered} 84 \\ (2,134) \end{gathered}$ | $\begin{gathered} 41 \\ (1,041) \end{gathered}$ | 570 | $\begin{aligned} & 14,600 \\ & (6,622) \end{aligned}$ | 590 | $\begin{aligned} & 14,900 \\ & (6,759) \end{aligned}$ |
| 3,750 | $\begin{gathered} 85 \\ (2,159) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 70 \\ (1,778) \end{gathered}$ | $\begin{gathered} 120 \\ (3,048) \end{gathered}$ | $\begin{gathered} 65 \\ (1,651) \end{gathered}$ | $\begin{gathered} 65 \\ (1,651) \end{gathered}$ | $\begin{gathered} 42 \\ (1,067) \end{gathered}$ | $\begin{gathered} 84 \\ (2,134) \end{gathered}$ | $\begin{gathered} 45 \\ (1,143) \end{gathered}$ | 790 | $\begin{aligned} & 20,500 \\ & (9,299) \end{aligned}$ | 830 | $\begin{aligned} & 21,500 \\ & (9,752) \end{aligned}$ |
| 5,000 | $\begin{gathered} 99 \\ (2,515) \end{gathered}$ | $\begin{gathered} 87 \\ (2,210) \end{gathered}$ | $\begin{gathered} 72 \\ (1,829) \end{gathered}$ | $\begin{gathered} 144 \\ (3,658) \end{gathered}$ | $\begin{gathered} 65 \\ (1,651) \end{gathered}$ | $\begin{gathered} 65 \\ (1,651) \end{gathered}$ | $\begin{gathered} 48 \\ (1,219) \end{gathered}$ | $\begin{gathered} 96 \\ (2,438) \end{gathered}$ | $\begin{gathered} 49 \\ (1,245) \end{gathered}$ | 1,050 | $\begin{gathered} 26,000 \\ (11,793) \end{gathered}$ | 1,090 | $\begin{gathered} 28,000 \\ (12,701) \end{gathered}$ |
| 7,500 | $\begin{gathered} 99 \\ (2,515) \end{gathered}$ | $\begin{gathered} 95 \\ (2,413) \end{gathered}$ | $\begin{gathered} 74 \\ (1,880) \end{gathered}$ | $\begin{gathered} 148 \\ (3,759) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 52 \\ (1,321) \end{gathered}$ | $\begin{gathered} 104 \\ (2,642) \end{gathered}$ | $\begin{gathered} 53 \\ (1,346) \end{gathered}$ | 1,320 | $\begin{gathered} 35,000 \\ (15,876) \end{gathered}$ | 1,360 | $\begin{gathered} 37,000 \\ (16,783) \end{gathered}$ |
| 10,000 | $\begin{gathered} 99 \\ (2,515) \end{gathered}$ | $\begin{gathered} 103 \\ (2,616) \end{gathered}$ | $\begin{gathered} 76 \\ (1,930) \end{gathered}$ | $\begin{gathered} 152 \\ (3,861) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 56 \\ (1,422) \end{gathered}$ | $\begin{gathered} 112 \\ (2,845) \end{gathered}$ | $\begin{gathered} 57 \\ (1,448) \end{gathered}$ | 1,740 | $\begin{gathered} 43,000 \\ (19,504) \end{gathered}$ | 1,780 | $\begin{gathered} 45,000 \\ (20,412) \end{gathered}$ |
| 12,000 | $\begin{gathered} 99 \\ (2,515) \end{gathered}$ | $\begin{gathered} 103 \\ (2,616) \end{gathered}$ | $\begin{gathered} 82 \\ (2,083) \end{gathered}$ | $\begin{gathered} 164 \\ (4,166) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 75 \\ (1,905) \end{gathered}$ | $\begin{gathered} 56 \\ (1,422) \end{gathered}$ | $\begin{gathered} 112 \\ (2,845) \end{gathered}$ | $\begin{gathered} 61 \\ (1,549) \end{gathered}$ | 1,850 | $\begin{gathered} 49,000 \\ (22,226) \end{gathered}$ | 1,880 | $\begin{gathered} 50,000 \\ (22,680) \end{gathered}$ |



## Type SB3 front-connected switchboards

## Overview

Siemens modular front-connected switchboard design provides a broad range of features and capabilities for a wide range of applications.
Every design aspect of Siemens switchboards has been aimed at improving layout convenience, reducing installation costs and minimizing the impact and cost of changes to the system.

Siemens switchboards provide a rugged design and the flexibility necessary in electrical systems for all types of applications from industrial plants and high-rise complexes to hospitals and commercial buildings.

## Industry standards

Siemens switchboards are designed, tested and constructed in accordance with:
■ UL 891 - Switchboards

- NEMA PB2 - Deadfront Distribution Switchboards
- Seismically qualified
- Other equipment is UL Listed as applicable.


## Features and benefits

Siemens switchboards ratings and features include:

- Up to 6,000 A main bus rating
- Up to 600 Vac
- Bus bracing up to 200 kAIC
- Copper or aluminum bussing
- Temperature- or density-rated busing
- Type 1 and type 3R enclosures
- Main and branch circuit breakers and fusible switches
- Thermal magnetic and solid-state circuit breakers
- Surge protective devices
- Utility metering provisions
- Siemens type ACCESS ${ }^{\text {TM }}$ power monitoring on mains and branches
- Ground fault protection on mains and branches
- Busway and transformer connections
- Protective relaying
- Two and three device autothrowover scheme.


## Type WL low-voltage switchgear

## Overview

Siemens type WL low-voltage, metalenclosed switchgear is designed, constructed and tested to provide superior power distribution, power monitoring and control.

At the heart of the type WL low-voltage switchgear is the world class Siemens type WL circuit breaker.

Siemens type WL low-voltage switchgear can be utilitized in industrial, institutional, critical power, utility and cogeneration and commercial applications.

Ratings include:
635 Vac maximum

- Three-phase, three-wire
- Three-phase, four-wire
- $50 / 60 \mathrm{~Hz}$
- 6,000 A maximum horizontal bus

5,000 A maximum vertical bus.
Enclosure options include:

- NEMA 1 indoor
- NEMA 3R outdoor walk-in
- NEMA 3R outdoor non-walk-in.


## Industry standards

Type WL low-voltage, metal-enclosed switchgear with power circuit breakers are designed, tested and constructed in accordance with:

UL 1558 - Metal-Enclosed Low-Voltage Power Circuit Breaker Switchgear

ANSIIIEEE C37.20.1 - Metal-Enclosed, Low-Voltage Power Circuit Breaker Switchgear.
Type WL drawout circuit breakers are designed for continuous operation at 100-percent of their current rating without the need for external heat sinks, and are in accordance with:

- UL 1066 - Low-Voltage AC and DC Power Circuit Breakers Used in Enclosures

ANSIIIEEE C37.13 - Low-Voltage AC Power Circuit Breakers Used in Enclosures


## Exclusive features

## Generator/utility protection sets

Some systems require power availability around the clock. On-site generation capabailities are becoming more and more common. Type WL digital electronic trip units allow the system designer to precisely tailor trip settings for the most demanding requirements.

The Siemens type WL 776 trip unit allows one set of trip settings for a fully loaded utility feed. With a simple contact closure, the trip unit toggles to a second trip set tailored to provide optimal generator protection.
The wide range of settings allow the type WL to provide protection for a minimal generator capacity for only essential loads through full backup to an entire facility. This dual utility/generator protection capability in a single circuit breaker allows the system designer unparalleled, costeffective flexibility.

## Extended instantaneous protection (EIP)

The type WL trip unit extended instantaneous protection (EIP) (patent pending) feature allows the system designer to achieve full selective trip coordination up to the short-time rating of the frame, while also allowing application of the circuit breaker up to the interrrupting rating of the frame. EIP allows the type WL circuit breaker to be applied up to the full-withstand current rating of the circuit breaker, for complete coordination, with a minus zero percent short-time band tolerance up to 85 kA on Frame Size II and 100 kA on Frame Size III.

Above fault currents of 20-percent higher than the full short-time current rating, the type WL circuit breaker is self-protecting, and the EIP function will trip the circuit breaker instantly to protect the frame and the system from these extremely high currents (as high as 150 kA on Frame Size III). An added benefit is that arc flash energy is greatly reduced in this highcurrent region due to EIP's instantaneous trip response.

Plan view


Front view
100.4" (2,550 mm)


1. Primary lug location
2. Refer to pages six through eight for transformer dimensions
3. Primary switch requires front access for topcable entry terminations
4. Transformer requires access from the front and $12^{\prime \prime}(305 \mathrm{~mm})$ from the back side for ventilation space

Plan view


## Front view



1. Primary lug location
2. Refer to page nine for transformer dimensions
3. Primary switch requires front access for topcable entry terminations
4. Transformer requires access from the front and 12" ( 305 mm ) from the back side for ventilation space
5. $31.5^{\prime \prime}(800 \mathrm{~mm})$
6. Maximum available space in top or bottom for customer's cables
7. Space for secondary leads from above
8. Space for secondary leads from below

9. Primary lug location
10. Refer to page nine for transformer dimensions

Published by and copyright © 2011:
Siemens AG
Energy Sector
Freyeslebenstrasse 1
91058 Erlangen, Germany
Siemens Energy, Inc.
7000 Siemens Road
Wendell, NC 27591

For more information, please contact:
+1 (800) 347-6659
www.usa.siemens.com/energy
Order No. E50001-F710-A389-X-4A00
Printed in USA
All rights reserved.
Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

Subject to change without prior notice. The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

