Chemical or Electrostatic Storage?

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Energy density Wh/kg</th>
<th>Power density W/kg</th>
<th>Service Life in cycles / years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-acid battery</td>
<td>30 – 50</td>
<td>150 – 300</td>
<td>300 – 1,000 / 3 – 5</td>
</tr>
<tr>
<td>Nickel-metal hydride</td>
<td>60 – 80</td>
<td>200 – 300</td>
<td>>10,000</td>
</tr>
<tr>
<td>Lithium-ion battery</td>
<td>90 – 150</td>
<td>500 – 2,000</td>
<td>>2,000 / 5 – 10</td>
</tr>
<tr>
<td>Supercaps (double layer)</td>
<td>3 – 5</td>
<td>2,000 – 10,000</td>
<td>1,000,000 / unlimited</td>
</tr>
</tbody>
</table>

Comparision of Battery Systems

- Lead-acid batteries: low energy density, high power density.
- Nickel-metal hydride: medium energy density, moderate power density.
- Lithium-ion: high energy density, high power density.
- Supercaps: very high energy density, moderate power density.

Electrolytic capacitors are used for storing short-term energy, such as for regenerative braking in hybrid vehicles. They can be discharging and recharging rapidly, making them suitable for applications requiring high power density. In contrast, lead-acid batteries are better suited for applications where power density is less critical but energy density is important, such as in electric vehicles.

In Brief

Piggybanks for Power

Whether at base or peak load, high-performance energy storage devices and smart energy management systems guarantee optimal power supplies in vehicles.

Materials for the Environment | Energy Storage

In Brief

Materials research is underpinning a revolution in nanotechnology, which is opening the door to a host of innovative materials with completely new properties. (p. 47)

New materials make it possible to generate, transmit and use energy more efficiently. Special coatings protect the blades in gas and steam turbines against heat and corrosion. This enables higher operating temperatures and thus higher efficiencies. Fuel consumption and environmental impact are both cut as a result. The goal is to introduce combined cycle power plants in 2011 that will use more than 60 percent of the energy in gas. The world’s most powerful gas turbine, which will start test operation in Ingsting, Germany, this year, will produce enough electricity to power the households in a city the size of Hamburg. (pp. 50, 54)

In the lighting sector, the focus is also on further cutting power consumption, eliminating pollutants, and increasing lamps’ service life. Mercury-free LEDs are particularly environmentally friendly, consume little electricity, and last up to 50 times longer than incandescent lamps. (p. 63)

Siemens is the world’s leading supplier of offshore wind power systems. In 2008, the company will install the world’s largest such wind farm off the coast of England. The facility will supply up to 180 megawatts of environmentally-friendly electricity from 54 turbines. Siemens’ one-piece rotor blades are extremely robust and up to 96 percent recyclable. (p. 60)

Advanced technology can cut energy consumption by planes, ships, cars, and trains. Siemens continuously improves vehicles by using lightweight engineering, better drive systems, and, in many cases, new materials. Improved energy storage systems also make regenerative braking an increasingly attractive option. (op. 70, 74)

Bioplastic from bacteria should also make electronic products more environmentally compatible in the future. (p. 58)